Data Champions Guide for Research Data Management
  • Data Champions Program
    • 🔵Data Champions at reNEW
    • 🔵License and Reusability
    • 🔵Contact Details
  • RDM Resources
    • 🟢What is RDM?
      • 🟢RDM Checklist
      • 🟢Research Project Process
    • 🟢Labguru Support
    • 🟢Research Portal
    • 🟢RDM Portal
  • Elixir Resources - RDM
    • 🟠What is Elixir?
      • 🟠RDM Guide for Life Sciences (Elixir)
      • 🟠RDM Kit for Life Sciences (Elixir)
      • 🟠RDM Kit for Single-cell sequencing (Elixir)
      • 🟠RDM Kit for Bioimaging (Elixir)
      • 🟠RDM Kit for Bioinformatics (Elixir)
      • 🟠RDM Kit for Human Data (Elixir)
      • 🟠RDM Kit for Data Repository (Elixir)
      • 🟠RDM Kit for Documentation and Metadata (Elixir)
  • Organizing Your Data
    • 🟣Batch Renaming
    • 🟣File and Folder Tips
      • 🟣File and Folder Tips I
      • 🟣File and Folder Tips II
      • 🟣File and Folder Tips III
      • 🟣File and Folder Tips IV
      • 🟣README File Template
  • EOSC
    • 🔴European Open Science Cloud
  • DMP Resources
    • 🟡DMP
      • 🟡DMP Planning
      • 🟡Data Management Plans
    • 🟡DMP Templates
      • 🟡EU Grants
        • 🟡EU Grants
          • 🟡Horizon Europe DMP
          • 🟡Horizon 2020 DMP
          • 🟡ERC DMP
        • 🟡Marie Curie Program
          • 🟡Implementation Guide for Marie Curie Fellows
          • 🟡Marie Curie Fellows Website
        • 🟡Horizon Europe DMP
        • 🟡Horizon 2020 DMP
        • 🟡ERC DMP
      • 🟡Genomics
        • 🟡10X scRNA Sequencing
        • 🟡Bulk RNA Sequencing
        • 🟡ChiPseq ATAC Sequencing
        • 🟡CUT and RUN/CUT and TAG Sequencing
        • 🟡Whole Genome Sequencing
      • 🟡UCPH
    • 🟡DeiC DMP Online
  • Information Videos
    • 🟢Information Videos
      • 🟢Organize Your Data
      • 🟢OMERO Plus Demo - Glencoe Software
      • 🟢reNEW Labguru Training Video 1
      • 🟢reNEW Labguru Training Video 2
      • 🟢Horizon Europe DMP - Webinar
    • 🟢eLearning RDM
  • Open Science
    • 🟠FAIR Principles
    • 🟠FAIR Principles - MP4
    • 🟠Open Science - 8 Pillars
  • Biomedical Repository
    • ⚪Biomedical Data Repositories
      • ⚪Guidance: Biomedical Repositories I
      • ⚪Guidance: Biomedical Repositories II
      • ⚪PLOS Guidance: Biomedical Repositories III
  • reNEW Websites
    • 🟣reNEW Websites
      • 🌎reNEW Website
      • 🌎reNEW Connect
      • 🌎reNEW KUnet
      • 🌎reNEW Genomics
      • 🌎reNEW Imaging
      • 🌎reNEW DanGPU
      • 🌎reNEW Flow Cy
    • 🟣Research Groups
      • 🟣Aragona Group
      • 🟣Brickman Group
        • Brickman Group
      • 🟣Jensen Group
      • 🟣Kirkeby Group
      • 🟣Little Group
      • 🟣Sedzinski Group
      • 🟣Zylicz Group
  • GDPR Resources
    • 🔴Data Protection Agency
    • 🔴GDPR for Researchers
    • 🛑GDPR Resouces
    • 🛑GDPR - Project Like Mine
  • UCPH IT Resources
    • 🟤Archive vs. Backup
    • 🟤UCPH HPC Guide
    • 🟤UCPH Data Storage
    • 🟤UCPH Research IT
  • Infographics
    • 🟠FAIR Principles
    • 🟠Open Science Pillars
    • 🟠Research Process
    • 🟠RODMM Framework
    • 🟠UCPH HPC Quick Guide
  • reNEW RDM Blog
    • 🟡Monthly Blog
      • 🟡Disclaimer
      • 🟡Blog Post - May 2024
      • 🟡Blog Post - June 2024
      • 🟡Blog Post - July 2024
      • 🟡Blog Post - Aug 2024
      • 🟡Blog Post - Sept 2024
      • 🟡Blog Post - Oct 2024
      • 🟡Blog Post - Nov 2024
    • 🟡License and Acknowledgements
Powered by GitBook
  1. reNEW Websites
  2. Research Groups

Sedzinski Group

PreviousLittle GroupNextZylicz Group

Last updated 1 year ago

Development and homeostasis of epithelial sheets depend upon the regular addition of new cells and removal of old cells. The last decade has seen an explosion of interest in the mechanisms governing the homeostatic extrusion or delamination of cells from epithelia. These studies reveal a complex interplay between molecular signals and cell mechanics and underscore the importance of epithelial cell shape in epithelial homeostasis.

Despite the intense focus on actomyosin-generated forces and cell removal from epithelia, the converse process of adding a new cell to an existing epithelium has been largely ignored. This gap in our knowledge is significant because the homeostasis of many epithelial tissues involves adding new cells from basally-located progenitors.

Indeed, such basal stem cells have been described in the airway, olfactory epithelium, cornea, and prostate, among others. In such multilayered tissues, progenitor cells must move apically and insert individually and seamlessly into the epithelial sheet, which must be exquisitely coordinated to maintain epithelial function.

🟣
🟣
Group research